Governo Federal

Dados do Trabalhos de Conclusão

UNIVERSIDADE FEDERAL DO ABC
NANOCIÊNCIAS E MATERIAIS AVANÇADOS (33144010006P9)
Atomistic Simulations of Water Confined in Cement Simulações Atomísticas de Água Confinada em Cimento
SYLVIA MUENI MUTISYA
TESE
27/02/2018

A pasta de cimento ´e um material complexo, heterogˆeneo e poroso com excelentes propriedades que o tornam um aglutinante adequado para aplica¸c˜oes em constru¸c˜oes. A qualidade e a durabilidade do cimento tˆem uma forte rela¸c˜ao com a ´agua contida nele. Embora uma boa compreens˜ao das intera¸c˜oes complexas entre os poros do cimento e os flu´ıdos confinados ´e necess´aria para resolver os atuais problemas de durabilidade, at´e ent˜ao nenhum modelo foi bem sucedido na captura de todos os processos e o papel da ´agua no cimento continua a ser uma ´area de pesquisa ativa. Com o intuito de contribuir para a compreensˆao atual da estrutura do cimento, este trabalho se concentrou no estudo dos processos dinˆamicos que acontecem na nanoescala da ´agua confinada em poros de cimento. Utilizamos simula¸c˜oes atom´ısticas que v˜ao desde primeiros princ´ıpios at´e dinˆamica molecular para estudar a principal fase de hidrata¸c˜ao, ou seja, hidrato de silicato de c´alcio (C–S–H), modelado por uma estrutura de tobermorita com defeitos. A partir de primeiros princ´ıpios, investigamos a morfologia da superf´ıcie da tobermorita a qual rege as intera¸c˜oes da ´agua com o modelo C-S-H. Demonstramos que a tobermorita forma cristais pseudo-hexagonais e a faceta mais est´avel ´e a (004). A fim de explorar sistemas maiores, checamos a transferabilidade do potencial cl´assico CLAYFF na descri¸c˜ao dos componentes do cimento atrav´es de um estudo comparativo entre simula¸c˜oes de mecˆanica molecular e DFT. Embora as frequˆencias calculadas com DFT e CLAYFF sejam diferentes, as propriedades estruturais e termodinˆamicas xv apresentam grande concordˆancia, indicando que o potencial CLAYFF ´e adequado para nossos c´alculos. Um parˆametro importante para quantificar a dinˆamica da ´agua no nanoconfinamento ´e o tempo de relaxa¸c˜ao T2. Para validar a metodologia implementada na determina¸c˜ao te´orica do tempo de relaxa¸c˜ao T2, realizamos simula¸c˜oes para a ´agua confinado dentro de nanoporos de calcita (1–6 nm). Observamos que a dinˆamica translacional ´e a principal respons´avel pela relaxa¸c˜ao de spin das mol´eculas de ´agua pr´oximas `a superf´ıcie. O tempo de relaxa¸c˜ao T2 para mol´eculas de ´agua adsorvidas na superf´ıcie ´e menor e independente do tamanho de poro, no entanto, uma relaxa¸c˜ao de spin do tipo bulk ´e observada no centro dos poros maiores que 3 nm. Buscando elucidar as diversas propriedades da ´agua nanoconfinada em poros C–S–H, dividimos nosso estudo em trˆes partes. Inicialmente, nos dedicamos a compreender os efeitos de confinamento da ´agua entre camadas (< 1 nm) e poros de gel (1–5 nm) do modelo C-S-H, assim como suas influˆencias nas intera¸c˜oes de superf´ıcie. A natureza hidrof´ılica da superf´ıcie C– S–H ´e evidenciada pela dinˆamica lenta da ´agua que interage diretamente com a superf´ıcie. Entre as camadas, a ´agua se encontra praticamente im´ovel e exibe propriedades similares aquelas observadas em ´agua super-resfriada. Na sequˆencia, investigamos o transporte da ´agua dentro da pasta de cimento implementando a relaxa¸c˜ao de troca do tipo 2D T2–T2 RMN entre poros de gel com 1 nm e 4 nm conectados entre si. Nossos resultados mostraram que h´a trocas de mol´eculas de ´agua entre poros com um tempo caracter´ıstico de troca de 18 ns. Finalmente, conclu´ımos nossos estudos considerando a natureza particulada do C–S–H a fim de estabelecer uma conex˜ao entre os fenˆomenos observados nas escalas nano e meso. Demonstramos que a ´agua confinada dentro do ambiente C–S–H edge-edge apresenta uma dinˆamica semelhante ao caso das superf´ıcies planares.

Cimento;Tobermorita;Calcita;´Água;Molecular Dinâmica;Teoria do Functional da Densidade;Relaxação RMN;Confinamento
Cement paste is a complex, heterogeneous and porous material with outstanding properties that make it a suitable binder for construction applications. The quality and durability of cement have a strong relationship with the water contained in it. While a good understanding of the complex interactions between the cement pores and the confined fluids is necessary to solve the current durability issues, no single model has been successful in capturing all the processes so far and the role of water in cement still remains an area of active research. To contribute to the current understanding of cement structure, this work has focused on studying the dynamical processes happening at the nanoscale of water confined in cement pores. We employ atomistic simulations ranging from first principles to molecular dynamics to study the main hydration phase, i.e calcium silicate hydrate (C–S–H), modeled by a defected tobermorite structure. Starting from first principles, the surface morphology of tobermorite which governs the interactions of water with the C–S–H model was investigated. It was shown that tobermorite forms pseudohexagonal crystals and the most stable facet is the (004). To upscale the calculations, the transferability of CLAYFF in the description of cementitious materials was tested through a comparative molecular mechanics and DFT study. Although the frequencies calculated with DFT and CLAYFF differ, the structures and thermodynamic quantities agree quite well, making CLAYFF a reasonable potential for our cement calculations. An important parameter to quantify water dynamics in nanoconfinement is NMR T2 relaxation time. To underpin the implemented methodology for theoretical determination of T2 relaxation time, simulations were performed for water confined within calcite nanopores (1–6 nm). It was revealed that translational dynamics are the main contribution to spin relaxation of near surface water molecules. The T2 relaxation time for water molecules directly adsorbed on the surface is short and pore size independent, however a bulk–like spin relaxation is observed at center of pores larger than 3 nm. To disentangle the diverse properties of water nanoconfined in C–S–H pores, the study of water within C–S–H was subdivided into three parts. The first part was dedicated to understanding the relative effect of the C–S–H surface and progressive confinement to water confined in the interlayer (< 1 nm) and gel pores (1–5 nm) of C–S–H model. The hydrophilic nature of the C–S–H surface is evidenced by the slow dynamics for the water interacting directly with the surface. Within the interlayer, water is highly immobile and exhibits similar properties as those observed in supercooled water. Next, transport within cement paste was investigated by implementing 2D T2–T2 NMR exchange relaxation between a 1 nm and 4 nm gel connected pores. We showed that there is water exchange in gel pores quantified by an exchange time of 18 ns. Lastly, the particulate nature of C–S–H is taken into consideration to facilitate bridging the gap between the atomistic and the mesoscale cement understanding. It was shown that water confined within the C–S–H edge–edge environment portrays similar dynamics as in the C–S–H planar surfaces.
Cement;Tobermorite;Calcite;Water;Molecular Dynamics;Density Functional Theory;NMR Relaxation;Confinement
1
238
INGLES
UNIVERSIDADE FEDERAL DO ABC

Contexto

NANOCIÊNCIAS E MATERIAIS AVANÇADOS
-
-

Banca Examinadora

CAETANO RODRIGUES MIRANDA
Sim
Nome Categoria
WENDEL ANDRADE ALVES Docente
MAURICE DE KONING Participante Externo
HERCULANO DA SILVA MARTINHO Docente
TITO JOSE BONAGAMBA Participante Externo

Vínculo

Bolsa de Fixação
Instituição de Ensino e Pesquisa
Ensino e Pesquisa
Não