Governo Federal

Dados do Trabalhos de Conclusão

UNIVERSIDADE FEDERAL DO PARANÁ
MÉTODOS NUMÉRICOS EM ENGENHARIA (40001016030P0)
COMPARAÇÃO E ANÁLISE DE ALGORITMOS PARA O CÁLCULO DE ESTRUTURAS DE PROTEINAS
INAJARA DA SILVA FREITAS
DISSERTAÇÃO
29/05/2015

Nesta dissertação serão abordados métodos para resolver o problema de determinar a estrutura de uma proteína quando apenas a distância entre os átomos é conhecida, que também é chamado de problema geométrico de distância molecular. Serão abordadas várias situações diferentes, referentes tanto ao conjunto de distâncias conhecidas, quanto ao erro que pode existir nestas distâncias. Também será mostrado como diferentes implementações do mesmo problema podem resultar em um erro maior ao determinar estas estruturas. A primeira formulação do problema será resolvida de forma linear e também não-linear. Esta variação da linearidade será obtida através de pequenas modificações na organização do problema de distâncias. Também será analisada a importância do número de átomos iniciais necessários para resolver este problema e a disposição de suas coordenadas no espaço para cada implementação. Por último será implementada uma versão para o problema de distâncias que pode ser resolvido com métodos de otimização, cujo método escolhido para solucionar este problema será o de Newton. Todos os algoritmos implementados serão comparados utilizando o Root-Mean-Square-Deviation, que é uma metodologia utilizada para calcular o erro gerado entre a estrutura original já conhecida e a estrutura obtida por cada método. Salientando que serão feitas algumas considerações especiais referentes a comparação de vários algoritmos, ao cálculo do erro gerado para quando as distâncias consideradas no problema molecular não forem exatas e pela implementação de um novo algoritmo iterativo.

Implementação, Distância Molecular, Otimização.
In this dissertation several methods are addressed to solve the problem of determining the structure of a protein when only the distance between these atoms is known, which can also be defined as the geometric molecular distance problem. It will be addressed different situations related to the set of known distances and also the error on these distances. It will be shown as well as different implementations of the same problem may result in a larger error when determining these structures. The first formulation of the problem will be solved linearly and also non-linear. This variation in linearity can be achieved by small changes in the organization of the problem. It will also be analyzed the importance of the number of initial atoms necessary to solve the problem and the position of its coordinates in space for each implementation. Finally it will be implemented a version for the distance problem that can be solved with optimization methods, the method chosen to solve this problem will be the Newton’s. All implemented algorithms will be compared using Root-Mean-Square Deviation, which is a methodology used to calculate the error generated between the original structure already known and the obtained structure by each method. Pointing out that special considerations are made concerning the comparison of several algorithms for calculating the error generated when the distances considered in the molecular problem are not exact and the implementation of a new algorithm.
Implementation, Molecular Distance, Optimization
01
129
PORTUGUES
UNIVERSIDADE FEDERAL DO PARANÁ

Contexto

PROGRAMAÇÃO MATEMÁTICA
-
-

Banca Examinadora

LUIZ CARLOS MATIOLI
Sim
Nome Categoria
DIANE RIZZOTTO ROSSETTO Participante Externo
SOLANGE REGINA DOS SANTOS Participante Externo
CARLOS HENRIQUE DOS SANTOS Participante Externo

Vínculo

-
-
-
Não